

A centre within the Monash University Injury Research Institute

Finding evidence-based strategies to improve motorcycle safety: a case-control study on serious injury crashes in Victoria

Trevor Allen, Lesley Day, Mike Lenne, Mark Symmons, Stuart Newstead, Peter Hillard, Rod McClure

Increased popularity of motorcycles

Motor vehicle registrations in Australia 700 Passenger Vehicles Number of Registered Passenger Vehicles (x 10^3) 12,000 MOTORCYCLES 650 Number of Registered 11,000 600 550 10,000 500 9,000 450 8,000 400 Motorcycles 350 7,000 300 6,000 × 250 10 5,000 200 4,000 2010 1970 1975 1980 1985 1990 1995 2000 2005 Year

Motor vehicle use in Australia (million km travelled)

	2003	2010	•
Car	151,743	163,360	8%
Motorcycle	1,376	2,394	74 %

Source: Australian Bureau of Statistics

Vulnerability of motorcyclists to injury

Sources: Australian Bureau of Statistics, Transport Accident Commission (VIC)

Motorcycle Safety Study – Early case series report

Managing Increasing Challenges in Motorcycle Safety (MICIMS) Aims

 To determine risk factors for motorcycle-related crashes involving serious injury

Specific focus on:

- 1. Role of speed incl. "excessive" vs. "inappropriate"
- 2. Role of road infrastructure and environment
- 3. Role of rider factors incl. age & rider experience

This presentation:

Data from first 75 recruited cases (recruitment continuing to early 2014)

- Comparison with previous studies in Victoria (Haworth et al. 1997, Stephan et al. 2008)

Methods

- **Population:** Motorcycle riders aged 18yrs & older
 - riding on public roads (150km radius of Melbourne, 6am-midnight)
- Study Design: Case-control + in-depth investigation
- 1. Rider is unit of analysis (road environment is controlled)

Group 1: Case riders - seriously injured riders admitted to hospital

Group 2: Control riders - riders passing crash sites

2. <u>Site is unit of analysis (rider is controlled)</u>

Case site + Case motorcycle - Site of crash + Motorcycle inspection Control site - 1km upstream of crash site

Measurement Modules: Case-series report

Rider Questionnaire (self reported)

- Crash details & circumstances (eg. number of vehicles involved)
- Contributing factors, trip-related factors, motorcycle factors
- Rider factors (incl. age, experience)

Crash site inspection

- Crash event investigation, contributing factors, travel speed estimation (where possible)

- Features of road environment (eg. road type, intersection type)

Case motorcycle inspection

- Crash investigation (incl. speed estimation where possible)
- Motorcycle type, engine capacity, safety features

Results: Rider factors & involvement of other road users

	Single- vehicle	Multi- vehicle	All crashes
Intersection	5	30	35
Mid-block straight	11	12	23
Mid-block curve	14	3	17
TOTAL	30	45	75

Multi-vehicle crashes

- 60% of crashes involved another vehicle(s)
- Over two-thirds occurred at an intersection
- Most common scenario was another vehicle turning into path of rider (69%)

Single-vehicle crashes

- 40% of cases were single vehicle crashes
- For 70% of cases a misjudgement/control error on part of the rider was a contributing factor
- Ineffective braking was the most common control error

Results: Features of road environment

	Urban	Rural	All roads
Intersection	28	7	35
X-Intersection	13	4	17
T-Intersection	13	1	14
Y-Intersection	2	2	4
Not intersection: straight	19	4	23
Not intersection: curve	4	13	17
TOTAL	51	24	75

Urban areas (68% of cases)

- 55% of crashes occurred at an intersection (X-Int. 25%, T-Int. 25%)

Rural areas (32% of cases)

- 54% of crashes occurred on a curve (incl. corner or bend)

Results – Speed related factors

Excessive speed (=exceeding speed limit)

	Current Study (MICIMS)	Haworth et al. (1997)	Stephan et al. (2008)
Study period (years)	2012-2013	1995-1996	2000-2005
Injury type (inclusion criteria)	Serious injury	Serious Injury + Fatal	Fatal
Region type	Vic Metro + Vic Regional	Vic Metro	Vic Metro + Vic Regional
Number of cases	75	222	201
Number (%) of cases where speed could be evaluated	37 (49%)	118 (53%)	109 (54%)
% of cases where excessive speed judged to be involved	27 %	23 %	47* %

Results: Rider factors

Rider age

Mean age of on-road motorcyclists admitted to Hospital (1995-2012)

Source: Victorian Admitted Episodes Dataset (VAED)

Results: Rider factors

Age vs. experience (licence years)

Results: Motorcycle characteristics

Motorcycle type

- 2 case motorcycles (3%) were fitted with an anti-lock braking system (ABS)

A centre within the Monash University Injury Research Institute

Motorcycle Safety Study – Early case series report

Results: Motorcycle characteristics

Engine Capacity

Summary & Conclusions

- 60% of PTW crashes investigated involved another vehicle
- The most common scenario was another vehicle turning into the path of the rider (69% of multi-vehicle crashes)
- For single-vehicle crashes, 54% occurred on a curve
- The age of riders seriously injured has increased substantially in recent years
- Very small number (3%) of motorcycles fitted with anti-lock brakes (ABS)
- At study completion, the case-control analysis will provide much more valuable information about the risk factors associated with rider characteristics, the road environment and motorcycle characteristics.

Acknowledgements: MICIMS

Project Team: Field-based Geoff Rayner Rob Jackel

Project Team: Research Nurses Josie Boyle Kim Woolley Elspeth Lucas Erin Sharp Karen Bradshaw Kerrie Segin Lisa Smithies Lisa Vermeulen Luke Usher Sally McCarthy

Chief Investigators:

Lesley Day (Principal) Mike Lenne Mark Symmons Stuart Newstead Peter Hillard Rod McClure

A centre within the Monash University Injury Research Institute

Research Partners: Aust. Research Council VicRoads Transport Accident Commission Victoria Police

Dept. of Justice Vic. Auto. Chamber of Commerce

Study Hospitals (Victoria):

The AlfredGeelongAustinGoulburn ValleyBallaratLatrobeBendigoMaroondahBox HillMonashDandenong NorthernFrankstonRoyal Melbourne